1.
矩阵的逆 定义: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=I。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。 可逆条件: A是可逆矩阵的充分必要条件是,即可逆矩阵。
2.
矩阵的伪逆和左右逆 伪逆矩阵: 伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv。
语音朗读:
1.
矩阵的逆 定义: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=I。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。 可逆条件: A是可逆矩阵的充分必要条件是,即可逆矩阵。
2.
矩阵的伪逆和左右逆 伪逆矩阵: 伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv。
语音朗读: