而这个沃尔巴克体,可是一种了不得的微生物。它的演化史可能只有不到一亿年,但这小小的一个属,以蛮横的传播方式,至少征服了十分之二的昆虫,席卷了整个地球,甚至还创造了新的物种——一切都源于它对宿主的操控能力。 沃尔巴克体属于广义细菌,是一种立克次氏体,1924 年,在尖音库蚊(Culex pipiens)中首次发现,当时觉得它只不过是又一种寄生生物而已。20 多年后,科学家又发现库蚊属中常出现种内的生殖不亲和现象,明明是同一个种,交配后就是无法产下活的后代。又过了 20 年,科学家无意中发现,通过使用抗生素杀灭库蚊体内的沃尔巴克体,可以治愈种内生殖不亲和——原来这不起眼的小细菌居然是不育的元凶。 沃尔巴克体能通过细胞质来“遗传”。它们藏身于大个子的卵细胞当中,就像是线粒体等细胞器一样,被留给了下一代。雄性感染者的精子也被动了手脚。它们若是和同样被感染了的雌性交配,能够传宗接代;但要是和没有感染的雌性交配,就会出现细胞质不亲和,不会开花结果,简直比大铁棍子医院还省事儿。这样的传播方式是异常排他的,其结果必然是沃尔巴克体寄主越来越多。有科学家曾在实验室种群里做过传播实验,只要短短的数代,整个种群中感染者的比例就能达到 100%。 沃尔巴克体甚至能把自己的 DNA 片段转移到无脊椎动物的细胞核里。Nicolle Rager Fuller, National Science Foundation
这样的情况是如何产生的?有一种解释是:沃尔巴克体能给寄主的精子上一把连接着炸弹的锁,同时在卵细胞中留下钥匙,只有正确的钥匙才能打开锁,否则受精过程会毁掉精子和卵子。但这样的修饰是如何实现的,还有待研究。人们唯一确定的是,出现了细胞质不亲和的受精卵,有丝分裂会出现问题(于是,沃尔巴克体成了细胞生物学家的爱物)。 除了造成细胞质不亲和之外,沃尔巴克体还有几种控制宿主生殖的方法。诱导宿主孤雌生殖的能力,在它们当中出现了很多次,其中最好的例子是它们能让赤眼蜂(Trichogramma)产生可用抗生素“治好”的孤雌生殖能力。它们还能让雄性雌性化,控制普通鼠妇(Armadillidium vulgare)遗传上的雄性成为表现型上的雌性。它们甚至是调控某些昆虫种群内的雌雄比例。这些小混蛋真是把别人的性别玩弄于鼓掌之中。 但是光操纵昆虫的生殖和性别也太小儿科了,它还能干出更大的事情,比如寻找木马,入侵更大的生物。 在非洲有一种可怕的疾病叫做河盲症,一直以来被人当做寄生虫病。病原体盘尾丝虫会像恐怖片一样钻入人类的眼球当中,导致永久失明。疫区内常常会出现小孩领着一群失明成年人行路的情景。为了躲避这种疾病,许多肥沃的土地被抛弃,人们不得不背井离乡。
河盲症疫区内的惨状。Otis Historical Archives Nat'l Museum of Health & Medicine
和很多寄生虫不一样,盘尾丝虫的生活史是个闭环。它们生于人类的身体,成长于中间宿主蚋(Simulium)的体内,最终又回到另一个人类的身体当中。盘尾丝虫的雌性成体,在人类的体内可以活上 15 年,一生最多能生产出 3000 多个幼体。幼体称作微丝蚴,它们会进入循环系统,过上一、两年“自由”的生活,期待命运带来一只疯狂吸血的雌蚋,好在后者体内进入生命的下一阶段。若这只雌蚋和体内的寄生虫运气足够好,它们还能再找到一个人类,盘尾丝虫的幼虫就有可能进入它们唯一的终末宿主人类的体内,最终成年。 身为寄生虫已经让宿主很难受了,但是这还不算什么。能够抵达盘尾丝虫“虫生”巅峰的个体当然只是少数,剩下的微丝蚴会死在人体中,裂解的身体会释放出一种有害的物体——这才是最可怕的东西,会导致人体出现严重的炎症以及发痒、水肿等皮肤病变。若微丝蚴钻入人的眼球当中,它们体内的有害物也会导致眼球的病变,长此以往,人就瞎了。
河盲症患者的眼睛。Pak Sang Lee, Community Eye Health Journal
而这个有害物体,就是沃尔巴克体。 自从人类发现了丝虫体内原来另有元凶,新的战术——抗生素治疗出现了。丝虫本身不怕抗生素,但沃尔巴克体怕。体内没有这种细菌的微丝蚴对寄主的毒性低,不再有致盲的能力;人们甚至发现,缺失了沃尔巴克体的盘尾丝虫甚至生活都不能自理,不再能繁殖和生存。 同样的事情,也发生在其他几种丝虫造成的寄生虫疾病上。象皮病的病原体血丝虫体内也有沃尔巴克体,它们与血丝虫造成的破坏也显著相关。使用抗生素之后,沃尔巴克体被杀灭,血丝虫也不能存活。因此,用抗生素对抗象皮病或许也是个办法。 《贝尔维尤的维纳斯》,摄影师 Oscar G. Mason 最著名的作品之一,拍摄的是一位身患象皮肿的妇女。
Nina Hafer Nathan Pike (2010)Shape change in viable eggs of the collembolan Folsomia candida provides insight into the role of Wolbachia endosymbionts Zoological Research
Seth R. Bordenstein F. Patrick O'Hara John H. Werren (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia Nature
Mark J. Taylor Claudio Bandi and Achim Hoerauf (2005) Wolbachia Bacterial Endosymbionts of Filarial Nematodes
Guowu Bian Deepak Joshi Yuemei Dong et al. (2013) Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection Science