世间所有的物质都有三态形式吗?酸碱盐芳香烃类醇醚类,化学物质就这些了,都有液态固态气态吗?那么纸呢?


这个问题,问得虽然有些幼稚,可真的要回答清楚,至少需要同时精通原子物理学、凝聚态物理学、量子力学、有机化学、材料化学…这样的专家,大概不会在知乎上答题,我就斗胆从我熟悉的专业角度来说一说。

首先,物质有多少种形态,只有三态吗?

这个问题,其实稍微看看相关的科普就能明白,现代物理对于“物态”早就不是只有固液气三态了,特别是等离子态,不光是有各种科普,而且和我们的生活也越来越近,比如荧光灯管发光的时候,里面就是等离子态。

而且,等离子态在自然界也很普遍。

那么第二个问题,物质都有固液气三种基本形态吗?

从化学结构的角度来说,固体是指原子被紧密束缚,原子的振动很慢,不足以挣脱它们之间的作用力,只能在自己的位置上,就像学校里正在上课的学生一样。而液体则是原子的振动加速,能够移位,但是还不足以脱离整体,就像学校里下了课一样,孩子们在学校里活动,但是不能出校门。至于气体,就是原子振动得足够快,脱离了群体,就像学校放学了一样。

不难发现,固液气是物质的三种基本状态。

不过呢,在传统的固液气三态中,也不是简单地根据目测就能分类的,比如为了验证沥青是固体还是液体,就成就了二十世纪最著名的长期实验——沥青滴落实验。

所以,物质是不是有固液气三态,这个问题远不是“有”或“没有”能解释清楚的。

举个很简单的例子。

玻璃,这个是我们日常生活中极为常见的“固体”,但它真的是固体吗?

从化学结构的角度来说,玻璃没有各向异性,是一个完全无序的体系,随着玻璃内部的原子的振动,它们之间的相对位置会发生改变,尽管常温下的玻璃,宏观上看不出什么变化。玻璃的近亲石英,它是各向异性的,它的原子虽然也会振动,却只在特定的位置上,原子之间的相对位置并不会因此改变。那么现在问题来了,玻璃是固态还是液态?

我们现在的中学物理课本上,把固体分为了晶体与非晶体这两种类型,其中分类依据是有没有确定的熔点,玻璃是非晶体,而石英则是晶体。试问,玻璃作为非晶体,既然没有固定的熔点,每升高一度,它就会软一点,固态与液态之间没有明确的界限,那么凭什么说,200 度的玻璃是固体,300 度更软一点的玻璃,它就成液体了呢?

可见,无论从结构还是从表观的参数来看,我们都很难把玻璃这个物质简单地划分为“固体”。

对于题中所说的纸张,那就更麻烦了。纸张的主体是纤维素,这是一种高分子材料,分子量很大。

绝大多数高分子材料也和玻璃一样,不是晶体,也没有固定的熔点可言。但是也有像“结晶牛胰岛素”这样的,它就有结晶态。一般的高分子,即便能够结晶,也只是局部的,比如常见的聚丙烯材料,可以用来做饭盒的那种,它就是这样。所以,对于高分子材料来说,所谓的固液气态,其实没有多少实际的意义,取而代之的是粘流态、高弹态和玻璃态。粘流态,自然就是像胶水那样,能够流动但粘度很大,高弹态是像橡胶那样容易变形,至于玻璃态就是常见的塑料那样,也会像玻璃一样破碎。如果按照固液气划分,高分子的三种状态实际上都是液态,因为分子间都存在位移,只是程度大小的区别。不过,因为微观结构与结晶性的差异,这几个状态,可以通过测试相关的参数来推算转变温度,比如从高弹态到玻璃态,发生变化的温度就叫 Tg,即玻璃化转变温度。与之对应,我们前面说过,非晶体并没有熔点一说。由此可见,对于高分子来说,一般的三态划分方法已经没啥意义了。

像纸张这样的物质,因为主要成分纤维素很容易结晶,并且因为含有大量的氢键,结晶性还很强,于是纸张在常温实际上就属于玻璃态,我们也因此能够撕开纸张。相比之下,一般用在书封面上的聚乙烯薄膜,它就是高弹态,撕的时候会变形,就不是太容易撕开了。如果我们对纸张里的纤维素做一些处理,比如降低其中氢键的数量,减弱结晶性,那它也可以成为高弹态。

不过,说出来让人不信,虽然高分子材料因为分子间的作用力大,分子之间紧密结合,但其实也有不少高分子是可以气化的,只是条件比较苛刻。目前有一种质谱仪叫 ESI-MS,也就是电喷雾,它就可以把大分子气雾化。

但是总的来说,高分子材料还是很难出现气态,没等加热到气态呢,早就已经发生分解了。当然,高分子能够结晶成“固体”的,其实也不多。

由此,我们就可以回答第二个问题,并不是所有的物质都有固液气三态,对于像纸这样的高分子而言,讨论固液气的意义不大。

最后说个问题,物质有多少类?题主说道:“酸碱盐芳香烃类醇醚类,化学物质就这些了,都有液态固态气态吗?”这也是题主最为露怯的地方。

我们现在的化学学科一般分为无机化学、有机化学、分析化学、物理化学以及高分子化学五门二级学科,其中无机、有机和高分子都是以研究物质为主,分析偏重于方法,而物化则偏重于原理。

广义来说,所有的物质都属于无机物或有机物,但是在材料学和生物学兴起之后,又按照分子量大小区分出了大分子和小分子。比方说我们身体里的 DNA 和蛋白质,当然属于有机物,但是按照一般有机物的研究方法是远远不够的,因为它们的分子量特别大,会出现很多奇特的现象。举个例子,酶是蛋白质的一种,酶化学的研究方法,除了研究各种基团以外,还要重点研究它的拓扑结构,所以经常看文献的话就会发现,很多有关的酶的研究,更像是在做立体几何。再比如说,前面也提到了,大分子的分子间作用力比较大,所以表现出的物理性质也和小分子不一样。

所以,在无机和有机以外,还专门设置出了高分子化学这门学科。

无机化学所研究的,包括单质、金属合金、氧化物、无机酸、无机碱、无机盐等等,很难用一个简单的分类囊括所有物质。

举个例子,氮化硼是一种类似于金刚石结构的无机材料,它的硬度在目前已知物质中也仅次于金刚石,耐磨性突出,所以常被用来作为刀具。

基于氮化硼的特征,现代化学专门划分出了“氮化物陶瓷”,这一家族除了氮化硼,还有氮化铝、氮化硅等,它们都没法归为酸碱盐的任何一类,甚至游离在路易斯酸碱理论以外。

对于有机物,情况就更复杂了。首先有机物也有酸碱盐系统,而且比无机物更复杂。比如氨基酸,同时存在氨基和羧基,自己就能成盐,你说它是酸、是碱、是盐,都没错。

至于所谓的醇、酚、醛之类的名称,它们都是官能团,并不能代表物质的种类。在一个有机物中,它往往会带有各种不同的官能团,很难说它具体是什么物质。

每一种结构稳定的小分子物质,一般都可以找得到它的固液气三态,这在化学上会用相图来表示。

比如这是很常见的一种物质,二氧化碳的相图。横轴代表温度,纵轴代表压强,从三相图上可以很清楚地知道,当温度为 X,气压为 Y 时,某种物质处于什么状态。

在读书的时候,我们都知道二氧化碳并不存在液态,干冰会直接变为二氧化碳气体,要不怎么叫干冰呢?

然而,二氧化碳也是可以有液态的,只是需要在较高的压力之下才能存在。

绝大多数物质都可以通过实验找出它的三相图,靠近横轴的是气态,靠近纵轴的则是固态,二者之间则是液态。当体系出现多组分的时候,比如溶液、合金等等,也可以采用相图进行研究。

在二氧化碳的三相图上,不难看到还有个超临界流体状态,这其实也是一种不同于固液气三态的一种状态。简单来说,当一种物质处于超临界流体状态时,它一部分的表现像气体,一部分表现像液体,气体和液体之间完全没有界面。这种状态不太容易想象,可以说个最简单的现象,如果水变成了超临界流体状态,我们用木桶打水,就和竹篮打水差不多的效果。

正因为超临界流体的这些特征,让它可以经常用在一些物质的萃取方面,目前,超临界二氧化碳流体的萃取已经是很常用的一种技术。

所以,一种小分子物质是不是具有三态,三种状态分别在什么条件下实现,可以通过查找它的三相图来鉴定,跟物质的种类并没有太大的关联。

最后总结一下:

1、固液气三态不能简单地用肉眼判断;

2、并不是所有的物质都有固液气三态;

3、小分子物质可以通过查找三相图来识别三态,大分子往往只有“液态”这一种;

4、物质的种类非常复杂,不能简单地用官能团区分。

为什么甘肃省地图划分的那么奇怪?(甘肃地图为啥狭长?)
上一篇
乘法的本质是什么?(乘法的本质怎么理解)
下一篇
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

相关推荐

  • 苹果手机各个功能介绍,iphone必须关闭的十个功能

    1、关闭蓝牙。现在已经很少有人用蓝牙传输文件了,而且iPhone与安卓的蓝牙并不兼容,所以,可以在设置中,关闭蓝牙功能。2、关闭通知功能。关于APP推送,无非也就是一些更新提醒,关了也不会有什么影响,还能多省点电。3、关闭自动调节亮度功能。一般来说,可以将屏幕亮度在15%-30%之间,在强光环境中,在进行手动调整就可以了。4、禁止后台刷新。在设置—通用中,关闭后台自动刷新功能,也可以对省电起到一点...

  • 高德打车怎么设置途经地,高德如何添加途经路线

    1、点击高德地图APP界面底部的“导航”按钮,进入导航模式。2、点击右下角的“路线”,进入路线设定页面,根据要求输入起点、终点进行路线规划。3、点击“添加途经点”,弹出添加途经点页面,点击右上角,可以添加或者删除途经点,乘客可以手动输入要添加的途经点。4、当添加完途经点时,点击“确定”按钮,即可添加途经路线。此时地图会显示出这条路线上所有的途经点,以及当前途经点的地点信息。怎么设计高德地图设置要经...

  • 高中必修二物理知识点总结,高一物理必修2重点知识点归纳

    您好,1.运动学-位移、速度、加速度的概念及计算方法-相关运动的分析方法,如相对运动和抛体运动-牛顿运动定律及其应用2.力学-力的概念及种类,如重力、弹力、摩擦力等-牛顿第一、二、三定律及其应用-力的合成与分解-能量、功、动能定理、功率的概念及计算方法-动量、冲量定理及其应用3.热学-温度、热量、热能的概念及计量单位-热传递的方式及其特点,如传导、对流、辐射-热力学第一、二定律及其应用,如热机效率...

  • 2023 是质数吗?(2023质数)

    毫无疑问,2023 是一个非常有意思的数。首先, 2023 显然不是质数,判断仅需 1 秒。最快的判别方法是:先把 2023 按照千分位分割,分为 2 和 023,然后相减,23 - 2 = 21,...

  • 学习文学是什么样的一种体验?(学文学的人有什么性格特点)

    我从本科开始就读文学,一直到现在,除了中间三年在美国和以色列学习犹太历史以外,我都在搞文学研究,只不过从中文系念着念着就念到了外文系。在这漫长的学习生涯当中,我从无知小本时期对文学作品的无脑崇拜到现今...